Skip to content
Search

Latest Stories

Top Stories

Is AI too big to fail?

Nvidia building and logo

The world came to a near standstill last month as everyone awaited Nvidia’s financial outlook.

Cheng Xin/Getty Images

This is the first entry in “Big Tech and Democracy,” a series designed to assist American citizens in understanding the impact technology is having — and will have — on our democracy. The series will explore the benefits and risks that lie ahead and offer possible solutions.

In the span of two or so years, OpenAI, Nvidia and a handful of other companies essential to the development of artificial intelligence have become economic behemoths. Their valuations and stock prices have soared. Their products have become essential to Fortune 500 companies. Their business plans are the focus of the national security industry. Their collapse would be, well, unacceptable. They are too big to fail.

The good news is we’ve been in similar situations before. The bad news is we’ve yet to really learn our lesson.


In the mid-1970s, a bank known for its conservative growth strategy decided to more aggressively pursue profits. The strategy worked. In just a few years the bank became the largest commercial and industrial lender in the nation. The impressive growth caught the attention of others — competitors looked on with envy, shareholders with appreciation and analysts with bullish optimism. As the balance sheet grew, however, so did the broader economic importance of the bank. It became too big to fail.

Sign up for The Fulcrum newsletter

Regulators missed the signs of systemic risk. A kick of the bank’s tires gave no reason to panic. But a look under the hood — specifically, at the bank’s loan-to-assets ratio and average return on loans — would have revealed a simple truth: The bank had been far too risky. The tactics that fueled its “go-go” years rendered the bank over exposed to sectors suffering tough economic times. Rumors soon spread that the bank was in a financially sketchy spot. It was the Titanic, without the band, to paraphrase an employee.

When the inevitable run on the bank started, regulators had no choice but to spend billions on keeping the bank afloat — saving it from sinking and bringing the rest of the economy with it. Of course, a similar situation played out during the Great Recession — risky behavior by a few bad companies imposed bailout payments on the rest of us.

AI labs are similarly taking gambles that have good odds of making many of us losers. As major labs rush to release their latest models, they are not stopping to ask if we have the social safety nets ready if things backfire. Nor are they meaningfully contributing to building those necessary safeguards. Instead, we find ourselves in a highly volatile situation. Our stock market seemingly pivots on earnings of just a few companies — the world came to a near standstill last month as everyone awaited Nvidia’s financial outlook. Our leading businesses and essential government services are quick to adopt the latest AI models despite real uncertainty as to whether they will operate as intended. If any of these labs took a financial tumble or any of the models were significantly flawed, the public would likely again be asked to find a way to save the risk takers.

This outcome may be likely but it’s not inevitable. The Dodd Frank Act passed in response to the Great Recession and intended to prevent another Too Big to Fail situation in the financial sector has been roundly criticized for its inadequacy. We should learn from its faults in thinking through how to make sure AI goliaths don’t crush all of us Davids. Some sample steps include mandating and enforcing more rigorous testing of AI models before deployment. It would also behoove us to prevent excessive reliance on any one model by the government — this could be accomplished by requiring public service providers to maintain analog processes in the event of emergencies. Finally, we can reduce the economic sway of a few labs by fostering more competition in the space.

Too Big to Fail scenarios have happened on too many occasions. There’s no excuse for allowing AI labs to become so large and so essential that we collectively end up paying for their mistakes.

Frazier is an assistant professor at the Crump College of Law at St. Thomas University and a Tarbell fellow.

Read More

Data-based checks and bicameral balancing of Executive Orders
shallow focus photography of computer codes

Data-based checks and bicameral balancing of Executive Orders

The flurry of Presidential Executive Orders attracted plenty of data-based checks in the media. The bad propaganda, rollbacks, and a dip in the President’s approval rating may have been avoided if the US Constitution mandated the Whitehouse to do similar checks before initiating the Executive Orders.

Mandating data-based checks on executive orders ensures that decisions made by the President are rooted in evidence and have a clear, justifiable basis. Data-based checks would ensure that executive orders are issued only after they are scrutinized on their merits, impact, and alignment with the public interest. These checks help prevent orders from being issued on personally or politically motivated priorities or unsubstantiated claims.

Keep ReadingShow less
TikTok: The Aftermath
File:TikTok app.jpg - Wikimedia Commons

TikTok: The Aftermath

When Congress passed PAFACA (Protecting Americans from Foreign Adversary Controlled Applications), they should have considered the consequences. They apparently didn’t.

With approximately 170 million users, what did politicians think would happen when TikTok actually went dark? Did Congress consider the aftermath? President Trump is trying hard to find a way to keep TikTok from going dark permanently, but he likely won’t succeed.

Keep ReadingShow less
Amid Trump’s War on LGBTQ+ Teens, Social Media Platforms Must Step Up
rainbow drawing
Photo by Alex Jackman on Unsplash

Amid Trump’s War on LGBTQ+ Teens, Social Media Platforms Must Step Up

With Trump’s war on inclusion, life has suddenly become even more dangerous for LGBTQ youth. The CDC has removed health information for LGBTQ+ people from its website—including information about creating safe, supportive spaces. Meanwhile, Trump’s executive order, couched in hateful and inaccurate language, has stopped gender-affirming care.

Sadly, Meta’s decision in January to end fact-checking threatens to make social media even less safe for vulnerable teens. To stop the spread of misinformation, Meta and other social media platforms must commit to protecting young users.

Keep ReadingShow less
Trump’s Gaza Proposal—and the Madman Theory

President Trump suggests relocating the Palestinian population from Gaza and turning the region into “the Riviera of the Middle East."

Jabin Botsford/The Washington Post via Getty Images

Trump’s Gaza Proposal—and the Madman Theory

Is Trump's Gaza suggestion this week that he intends to relocate the Palestinian population from Gaza and turn the region into “the Riviera of the Middle East” an example of the "Madman Theory" or is it a negotiation tactic?

The term "Madman Theory" is a concept that primarily came into vogue during the presidency of Richard Nixon in the 1970s. Comparisons between the two are now being made after Trump's seemingly crazy comments on Gaza.

Keep ReadingShow less