Skip to content
Search

Latest Stories

Top Stories

We may face another 'too big to fail' scenario as AI labs go unchecked

NVIDIA headquarters

Our stock market pivots on the performance of a handful of AI-focused companies like Nvidia.

hapabapa/Getty Images

Frazier is an assistant professor at the Crump College of Law at St. Thomas University and a Tarbell fellow.

In the span of two or so years, OpenAI, Nvidia and a handful of other companies essential to the development of artificial intelligence have become economic behemoths. Their valuations and stock prices have soared. Their products have become essential to Fortune 500 companies. Their business plans are the focus of the national security industry. Their collapse would be, well, unacceptable. They are too big to fail.

The good news is we’ve been in similar situations before. The bad news is we’ve yet to really learn our lesson.


In the mid-1970s, a bank known for its conservative growth strategy decided to more aggressively pursue profits. The strategy worked. In just a few years the bank became the largest commercial and industrial lender in the nation. The impressive growth caught the attention of others — competitors looked on with envy, shareholders with appreciation and analysts with bullish optimism. As the balance sheet grew, however, so did the broader economic importance of the bank. It became too big to fail.

Regulators missed the signs of systemic risk. A kick of the bank’s tires gave no reason to panic. But a look under the hood — specifically, at the bank’s loan-to-assets ratio and average return on loans — would have revealed a simple truth: The bank had been far too risky. The tactics that fueled its go-go years rendered the bank over exposed to sectors suffering tough economic times. Rumors soon spread that the bank was in a financially sketchy spot. It was the Titanic, without the band, to paraphrase an employee.

When the inevitable run on the bank started, regulators had no choice but to spend billions to keep the bank afloat — staving it from sinking and bringing the rest of the economy with it. Of course, a similar situation played out during the Great Recession — risky behavior by a few bad companies imposed bailout payments on the rest of us.

AI labs are similarly taking gambles that have good odds of making many of us losers. As major labs rush to release their latest models, they are not stopping to ask if we have the social safety nets ready if things backfire. Nor are they meaningfully contributing to building those necessary safeguards.

Instead, we find ourselves in a highly volatile situation. Our stock market seemingly pivots on earnings of just a few companies — the world came to a near standstill last month as everyone awaited Nvidia’s financial outlook. Our leading businesses and essential government services are quick to adopt the latest AI models despite real uncertainty as to whether they will operate as intended. If any of these labs took a financial tumble or any of the models were significantly flawed, the public would likely again be asked to find a way to save the risk takers.

This outcome may be likely but it’s not inevitable. The Dodd-Frank Act passed in response to the Great Recession and intended to prevent another Too Big to Fail situation in the financial sector has been roundly criticized for its inadequacy. We should learn from its faults in thinking through how to make sure AI goliaths don’t crush all of us Davids.

Some sample steps include mandating and enforcing more rigorous testing of AI models before deployment. It would also behoove us to prevent excessive reliance on any one model by the government — this could be accomplished by requiring public service providers to maintain analog processes in the event of emergencies. Finally, we can reduce the economic sway of a few labs by fostering more competition in the space.

Too Big to Fail scenarios have happened on too many occasions. There’s no excuse for allowing AI labs to become so large and so essential that we collectively end up paying for their mistakes.

Read More

Rebuilding Democracy in the Age of Brain Rot
person using laptop computer
Photo by Christin Hume on Unsplash

Rebuilding Democracy in the Age of Brain Rot

We live in a time when anyone with a cellphone carries a computer more powerful than those that sent humans to the moon and back. Yet few of us can sustain a thought beyond a few seconds. One study suggested that the average human attention span dropped from about 12 seconds in 2000 to roughly 8 seconds by 2015—although the accuracy of this figure has been disputed (Microsoft Canada, 2015 Attention Spans Report). Whatever the number, the trend is clear: our ability to focus is not what it used to be.

This contradiction—constant access to unlimited information paired with a decline in critical thinking—perfectly illustrates what Oxford named its 2024 Word of the Year: “brain rot.” More than a funny meme, it represents a genuine threat to democracy. The ability to deeply engage with issues, weigh rival arguments, and participate in collective decision-making is key to a healthy democratic society. When our capacity for focus erodes due to overstimulation, distraction, or manufactured outrage, it weakens our ability to exercise our role as citizens.

Keep ReadingShow less
Two people looking at computer screens with data.

A call to rethink AI governance argues that the real danger isn’t what AI might do—but what we’ll fail to do with it. Meet TFWM: The Future We’ll Miss.

Getty Images, Cravetiger

The Future We’ll Miss: Political Inaction Holds Back AI's Benefits

We’re all familiar with the motivating cry of “YOLO” right before you do something on the edge of stupidity and exhilaration.

We’ve all seen the “TL;DR” section that shares the key takeaways from a long article.

Keep ReadingShow less