Skip to content
Search

Latest Stories

Top Stories

Main Street AI: AI for the People

Main Street AI: AI for the People

An illustration of AI chat boxes.

Getty Images, Andriy Onufriyenko

When Vice President J.D. Vance addressed the Paris AI Summit, he unknowingly made a strong case for public artificial intelligence (AI) infrastructure. His vision—of AI that empowers workers rather than displaces them, enables small businesses to compete with tech giants on a level playing field and delivers benefits to all Americans—cannot be achieved through private industry alone. What's needed is nothing less than an AI equivalent of the interstate highway system: a nationwide network of computational resources, shared data, and technical expertise that democratizes access to this transformative technology.

The challenge is clear. The National AI Opinion Monitor reveals a stark digital divide in AI adoption: higher-income urban professionals increasingly leverage AI tools to enhance their productivity, while rural and lower-income Americans remain largely locked out of the AI economy. Without intervention, AI threatens to become another force multiplier for existing inequalities.


The solution lies in a federal-state partnership that brings AI capabilities to Main Street. Here's how "Main Street AI" could work:

The federal government would establish a $100 billion matching grant program over five years for states to build local AI capacity. States would qualify for funding by meeting specific criteria:

First, they must establish an AI infrastructure authority with a governing board that includes representatives from small businesses, labor organizations, educational institutions, and community groups. This ensures local stakeholders have a voice in determining how AI resources are deployed.

Second, states must commit to a minimum 30% match of federal funds and demonstrate a plan for the long-term sustainability of their respective AI organizations. The federal contribution would be structured on a sliding scale, with higher matching rates for rural states and those with lower per capita incomes.

Third, states must develop comprehensive plans for four core components: computational infrastructure, data commons, workforce development, and energy resources. Given the staggering resources required to acquire these essential ingredients, they could enter into regional compacts with surrounding states.

The computational infrastructure component would create regional AI computing centers, typically housed at state universities or community colleges. These centers would provide cloud computing resources at subsidized rates to qualifying small businesses, researchers, and public agencies. Think of it as an AI library system, where local enterprises can "check out" computing power to develop and run their own AI applications.

The data commons would establish secure repositories of high-quality, annotated datasets relevant to local industries and challenges. A farming state might prioritize agricultural data for precision farming applications, while a coastal state might focus on climate and weather data for resilience planning. Residents would share this information with the understanding that resulting AI tools would be tailored to their needs and that the state would act as a responsible steward of their data.

Workforce development programs would combine traditional computer science education with practical AI training. Community colleges would offer AI certification programs designed in partnership with local employers. Mobile training units would bring AI literacy programs to rural communities, ensuring that technological advancement doesn't leave anyone behind.

The energy component would incentivize the development of renewable and reliable power sources to support AI computing needs, addressing both environmental concerns and the substantial power requirements of AI systems.

Consider how this might work in practice. Take Wisconsin, where dairy farmers struggle to compete with industrial-scale operations. Through the state's AI infrastructure authority, a cooperative of small dairy farmers could access computing resources to develop AI systems for herd health monitoring and milk production optimization. The local data commons would provide historical agricultural data to train these systems, while workforce programs would train farmers and their employees to use and maintain the technology.

These aren't mere hypotheticals. Several states have already begun experimenting with similar initiatives on a smaller scale. In North Carolina, the North Carolina Biotechnology Center has established a pilot program providing AI resources to local biotechnology startups. In Georgia, Illinois, New York, Ohio, and Colorado, select community colleges will develop novel programs for students to learn critical AI skills thanks to Complete College America, a nonprofit focused on increasing postsecondary attainment across the U.S. In Oklahoma, 10,000 residents will go through an AI essentials course at no cost thanks to the State’s support.

The federal program would accelerate, scale, and expand these efforts while ensuring that benefits reach beyond current tech hubs. By requiring states to meet specific criteria for funding, it would create accountability while allowing for local adaptation. The matching requirement would ensure state buy-in while the sliding scale would help level the playing field between wealthy and poor states.

This approach directly addresses the concerns Vice President Vance raised in Paris. It creates a pro-worker growth path by emphasizing augmentation over automation. It levels the playing field by giving small businesses access to resources currently monopolized by tech giants. It ensures all Americans benefit by embedding AI development within local communities and economies.

Critics might argue that this represents unnecessary government intervention in a thriving private market. But history shows that transformative technologies often require public investment to reach their full potential. The interstate highway system didn't eliminate private transportation companies—it created new opportunities for them while ensuring universal access to automotive transportation. Similarly, a public AI infrastructure wouldn't compete with private AI companies but would instead expand the market for AI applications while ensuring broader participation in the AI economy.

The question isn't whether America needs a public AI infrastructure—it's whether we'll build one before the opportunity for widespread AI development slips away. Vice President Vance has articulated the right goals. Now it's time for concrete action to achieve them.


Kevin Frazier is an Adjunct Professor at Delaware Law and an Emerging Technology Scholar at St. Thomas University College of Law.

Read More

An illustration of AI chat boxes.

An illustration of AI chat boxes.

Getty Images, Andriy Onufriyenko

In Defense of ‘AI Mark’

Earlier this week, a member of the UK Parliament—Mark Sewards—released an AI tool (named “AI Mark”) to assist with constituent inquiries. The public response was rapid and rage-filled. Some people demanded that the member of Parliament (MP) forfeit part of his salary—he's doing less work, right? Others called for his resignation—they didn't vote for AI; they voted for him! Many more simply questioned his thinking—why on earth did he think outsourcing such sensitive tasks to AI would be greeted with applause?

He's not the only elected official under fire for AI use. The Prime Minister of Sweden, Ulf Kristersson, recently admitted to using AI to study various proposals before casting votes. Swedes, like the Brits, have bombarded Kristersson with howls of outrage.

Keep ReadingShow less
shallow focus photography of computer codes
Shahadat Rahman on Unsplash

When Rules Can Be Code, They Should Be!

Ninety years ago this month, the Federal Register Act was signed into law in a bid to shine a light on the rules driving President Franklin Roosevelt’s New Deal—using the best tools of the time to make government more transparent and accountable. But what began as a bold step toward clarity has since collapsed under its own weight: over 100,000 pages, a million rules, and a public lost in a regulatory haystack. Today, the Trump administration’s sweeping push to cut red tape—including using AI to hunt obsolete rules—raises a deeper challenge: how do we prevent bureaucracy from rebuilding itself?

What’s needed is a new approach: rewriting the rule book itself as machine-executable code that can be analyzed, implemented, or streamlined at scale. Businesses could simply download and execute the latest regulations on their systems, with no need for costly legal analysis and compliance work. Individuals could use apps or online tools to quickly figure out how rules affect them.

Keep ReadingShow less
Microchip labeled "AI"
Preparing for an inevitable AI emergency
Eugene Mymrin/Getty Images

Nvidia and AMD’s China Chip Deal Sets Dangerous Precedent in U.S. Industrial Policy

This morning’s announcement that Nvidia and AMD will resume selling AI chips to China on the condition that they surrender 15% of their revenue from those sales to the U.S. government marks a jarring inflection point in American industrial policy.

This is not just a transaction workaround for a particular situation. This is a major philosophical government policy shift.

Keep ReadingShow less
Doctor using AI technology
Akarapong Chairean/Getty Images

Generative AI Can Save Lives: Two Diverging Paths In Medicine

Generative AI is advancing at breakneck speed. Already, it’s outperforming doctors on national medical exams and in making difficult diagnoses. Microsoft recently reported that its latest AI system correctly diagnosed complex medical cases 85.5% of the time, compared to just 20% for physicians. OpenAI’s newly released GPT-5 model goes further still, delivering its most accurate and responsive performance yet on health-related queries.

As GenAI tools double in power annually, two distinct approaches are emerging for how they might help patients.

Keep ReadingShow less