Skip to content
Search

Latest Stories

Follow Us:
Top Stories

Main Street AI: AI for the People

Opinion

Main Street AI: AI for the People

An illustration of AI chat boxes.

Getty Images, Andriy Onufriyenko

When Vice President J.D. Vance addressed the Paris AI Summit, he unknowingly made a strong case for public artificial intelligence (AI) infrastructure. His vision—of AI that empowers workers rather than displaces them, enables small businesses to compete with tech giants on a level playing field and delivers benefits to all Americans—cannot be achieved through private industry alone. What's needed is nothing less than an AI equivalent of the interstate highway system: a nationwide network of computational resources, shared data, and technical expertise that democratizes access to this transformative technology.

The challenge is clear. The National AI Opinion Monitor reveals a stark digital divide in AI adoption: higher-income urban professionals increasingly leverage AI tools to enhance their productivity, while rural and lower-income Americans remain largely locked out of the AI economy. Without intervention, AI threatens to become another force multiplier for existing inequalities.


The solution lies in a federal-state partnership that brings AI capabilities to Main Street. Here's how "Main Street AI" could work:

The federal government would establish a $100 billion matching grant program over five years for states to build local AI capacity. States would qualify for funding by meeting specific criteria:

First, they must establish an AI infrastructure authority with a governing board that includes representatives from small businesses, labor organizations, educational institutions, and community groups. This ensures local stakeholders have a voice in determining how AI resources are deployed.

Second, states must commit to a minimum 30% match of federal funds and demonstrate a plan for the long-term sustainability of their respective AI organizations. The federal contribution would be structured on a sliding scale, with higher matching rates for rural states and those with lower per capita incomes.

Third, states must develop comprehensive plans for four core components: computational infrastructure, data commons, workforce development, and energy resources. Given the staggering resources required to acquire these essential ingredients, they could enter into regional compacts with surrounding states.

The computational infrastructure component would create regional AI computing centers, typically housed at state universities or community colleges. These centers would provide cloud computing resources at subsidized rates to qualifying small businesses, researchers, and public agencies. Think of it as an AI library system, where local enterprises can "check out" computing power to develop and run their own AI applications.

The data commons would establish secure repositories of high-quality, annotated datasets relevant to local industries and challenges. A farming state might prioritize agricultural data for precision farming applications, while a coastal state might focus on climate and weather data for resilience planning. Residents would share this information with the understanding that resulting AI tools would be tailored to their needs and that the state would act as a responsible steward of their data.

Workforce development programs would combine traditional computer science education with practical AI training. Community colleges would offer AI certification programs designed in partnership with local employers. Mobile training units would bring AI literacy programs to rural communities, ensuring that technological advancement doesn't leave anyone behind.

The energy component would incentivize the development of renewable and reliable power sources to support AI computing needs, addressing both environmental concerns and the substantial power requirements of AI systems.

Consider how this might work in practice. Take Wisconsin, where dairy farmers struggle to compete with industrial-scale operations. Through the state's AI infrastructure authority, a cooperative of small dairy farmers could access computing resources to develop AI systems for herd health monitoring and milk production optimization. The local data commons would provide historical agricultural data to train these systems, while workforce programs would train farmers and their employees to use and maintain the technology.

These aren't mere hypotheticals. Several states have already begun experimenting with similar initiatives on a smaller scale. In North Carolina, the North Carolina Biotechnology Center has established a pilot program providing AI resources to local biotechnology startups. In Georgia, Illinois, New York, Ohio, and Colorado, select community colleges will develop novel programs for students to learn critical AI skills thanks to Complete College America, a nonprofit focused on increasing postsecondary attainment across the U.S. In Oklahoma, 10,000 residents will go through an AI essentials course at no cost thanks to the State’s support.

The federal program would accelerate, scale, and expand these efforts while ensuring that benefits reach beyond current tech hubs. By requiring states to meet specific criteria for funding, it would create accountability while allowing for local adaptation. The matching requirement would ensure state buy-in while the sliding scale would help level the playing field between wealthy and poor states.

This approach directly addresses the concerns Vice President Vance raised in Paris. It creates a pro-worker growth path by emphasizing augmentation over automation. It levels the playing field by giving small businesses access to resources currently monopolized by tech giants. It ensures all Americans benefit by embedding AI development within local communities and economies.

Critics might argue that this represents unnecessary government intervention in a thriving private market. But history shows that transformative technologies often require public investment to reach their full potential. The interstate highway system didn't eliminate private transportation companies—it created new opportunities for them while ensuring universal access to automotive transportation. Similarly, a public AI infrastructure wouldn't compete with private AI companies but would instead expand the market for AI applications while ensuring broader participation in the AI economy.

The question isn't whether America needs a public AI infrastructure—it's whether we'll build one before the opportunity for widespread AI development slips away. Vice President Vance has articulated the right goals. Now it's time for concrete action to achieve them.


Kevin Frazier is an Adjunct Professor at Delaware Law and an Emerging Technology Scholar at St. Thomas University College of Law.

Read More

Meta Undermining Trust but Verify through Paid Links
Facebook launches voting resource tool
Facebook launches voting resource tool

Meta Undermining Trust but Verify through Paid Links

Facebook is testing limits on shared external links, which would become a paid feature through their Meta Verified program, which costs $14.99 per month.

This change solidifies that verification badges are now meaningless signifiers. Yet it wasn’t always so; the verified internet was built to support participation and trust. Beginning with Twitter’s verification program launched in 2009, a checkmark next to a username indicated that an account had been verified to represent a notable person or official account for a business. We could believe that an elected official or a brand name was who they said they were online. When Twitter Blue, and later X Premium, began to support paid blue checkmarks in November of 2022, the visual identification of verification became deceptive. Think Fake Eli Lilly accounts posting about free insulin and impersonation accounts for Elon Musk himself.

This week’s move by Meta echoes changes at Twitter/X, despite the significant evidence that it leaves information quality and user experience in a worse place than before. Despite what Facebook says, all this tells anyone is that you paid.

Keep ReadingShow less
artificial intelligence

Rather than blame AI for young Americans struggling to find work, we need to build: build new educational institutions, new retraining and upskilling programs, and, most importantly, new firms.

Surasak Suwanmake/Getty Images

Blame AI or Build With AI? Only One Approach Creates Jobs

We’re failing young Americans. Many of them are struggling to find work. Unemployment among 16- to 24-year-olds topped 10.5% in August. Even among those who do find a job, many of them are settling for lower-paying roles. More than 50% of college grads are underemployed. To make matters worse, the path forward to a more stable, lucrative career is seemingly up in the air. High school grads in their twenties find jobs at nearly the same rate as those with four-year degrees.

We have two options: blame or build. The first involves blaming AI, as if this new technology is entirely to blame for the current economic malaise facing Gen Z. This course of action involves slowing or even stopping AI adoption. For example, there’s so-called robot taxes. The thinking goes that by placing financial penalties on firms that lean into AI, there will be more roles left to Gen Z and workers in general. Then there’s the idea of banning or limiting the use of AI in hiring and firing decisions. Applicants who have struggled to find work suggest that increased use of AI may be partially at fault. Others have called for providing workers with a greater say in whether and to what extent their firm uses AI. This may help firms find ways to integrate AI in a way that augments workers rather than replace them.

Keep ReadingShow less
Parv Mehta Is Leading the Fight Against AI Misinformation

A visual representation of deep fake and disinformation concepts, featuring various related keywords in green on a dark background, symbolizing the spread of false information and the impact of artificial intelligence.

Getty Images

Parv Mehta Is Leading the Fight Against AI Misinformation

At a moment when the country is grappling with the civic consequences of rapidly advancing technology, Parv Mehta stands out as one of the most forward‑thinking young leaders of his generation. Recognized as one of the 500 Gen Zers named to the 2025 Carnegie Young Leaders for Civic Preparedness cohort, Mehta represents the kind of grounded, community‑rooted innovator the program was designed to elevate.

A high school student from Washington state, Parv has emerged as a leading youth voice on the dangers of artificial intelligence and deepfakes. He recognized early that his generation would inherit a world where misinformation spreads faster than truth—and where young people are often the most vulnerable targets. Motivated by years of computer science classes and a growing awareness of AI’s risks, he launched a project to educate students across Washington about deepfake technology, media literacy, and digital safety.

Keep ReadingShow less
child holding smartphone

As Australia bans social media for kids under 16, U.S. parents face a harder truth: online safety isn’t an individual choice; it’s a collective responsibility.

Getty Images/Keiko Iwabuchi

Parents Must Quit Infighting to Keep Kids Safe Online

Last week, Australia’s social media ban for children under age 16 officially took effect. It remains to be seen how this law will shape families' behavior; however, it’s at least a stand against the tech takeover of childhood. Here in the U.S., however, we're in a different boat — a consensus on what's best for kids feels much harder to come by among both lawmakers and parents.

In order to make true progress on this issue, we must resist the fallacy of parental individualism – that what you choose for your own child is up to you alone. That it’s a personal, or family, decision to allow smartphones, or certain apps, or social media. But it’s not a personal decision. The choice you make for your family and your kids affects them and their friends, their friends' siblings, their classmates, and so on. If there is no general consensus around parenting decisions when it comes to tech, all kids are affected.

Keep ReadingShow less