Skip to content
Search

Latest Stories

Follow Us:
Top Stories

Why Academic Debates About AI Mislead Lawmakers—and the Public

Opinion

A gavel next to a computer chip with the words "AI" on it.

Often, AI policy debates focus on speculative risks rather than real-world impacts. Kevin Frazier argues that lawmakers and academics must shift their focus from sci-fi scenarios to practical challenges.

Getty Images, Just_Super

Picture this: A congressional hearing on “AI policy” makes the evening news. A senator gravely asks whether artificial intelligence might one day “wake up” and take over the world. Cameras flash. Headlines declare: “Lawmakers Confront the Coming Robot Threat.” Meanwhile, outside the Beltway on main streets across the country, everyday Americans worry about whether AI tools will replace them on factory floors, in call centers, or even in classrooms. Those bread-and-butter concerns—job displacement, worker retraining, and community instability—deserve placement at the top of the agenda for policymakers. Yet legislatures too often get distracted, following academic debates that may intrigue scholars but fail to address the challenges that most directly affect people’s lives.

That misalignment is no coincidence. Academic discourse does not merely fill journals; it actively shapes the policy agenda and popular conceptions of AI. Too many scholars dwell on speculative, even trivial, hypotheticals. They debate whether large language models should be treated as co-authors on scientific papers or whether AI could ever develop consciousness. These conversations filter into the media, morph into lawmaker talking points, and eventually dominate legislative hearings. The result is a political environment where sci-fi scenarios crowd out the issues most relevant to ordinary people—like how to safeguard workers, encourage innovation, and ensure fairness in critical industries. When lawmakers turn to scholars for guidance, they often encounter lofty speculation rather than clear-eyed analysis of how AI is already reshaping specific sectors.


The consequences are predictable. Legislatures either do nothing—paralyzed by the enormity of “AI” as a category—or they pass laws so broad as to be meaningless. A favorite move at the state level has been to declare, in effect, that “using AI to commit an illegal act is illegal.” Laws penalizing the use of AI to do already illegal things give the appearance of legislative activity but do little to further the public interest. That approach may win headlines and votes, but it hardly addresses the real disruption workers and businesses face.

Part of the problem is definitional. “AI” is treated as if it were a single, coherent entity, when in reality it encompasses a spectrum—from narrow, task-specific tools to general-purpose models used across industries. Lumping all of this under one heading creates confusion. Should the same rules apply to a start-up using machine learning to improve crop yields and to a tech giant rolling out a massive generative model? Should we regulate a medical imaging tool the same way we regulate a chatbot? The broader the category, the harder it becomes to write rules that are both effective and proportionate.

This definitional sprawl plays into the hands of entrenched players. Large, well-capitalized companies can afford to comply with sweeping “AI regulations” and even lobby to shape them in their favor. Smaller upstarts—who might otherwise deliver disruptive innovations—are less able to bear compliance costs. Overly broad laws risk cementing incumbents’ dominance while stifling competition and experimentation.

Academia’s misdirected focus amplifies these legislative errors. By devoting disproportionate attention to speculative harms, scholars leave a vacuum on the issues that lawmakers urgently need guidance on: workforce transitions, liability in high-risk contexts, and the uneven distribution of benefits across communities. In turn, legislators craft rules based on vibes and headlines rather than hard evidence. The cycle perpetuates popular misunderstandings about AI as a mystical, autonomous force rather than what it really is: advanced computation deployed in diverse and practical ways.

Breaking this cycle requires a shift in academic priorities. Law schools and policy institutes should be producing rigorous, sector-specific research that maps how AI is actually used in hiring, logistics, healthcare, and education. They should be equipping students—not just with critical theory about technology but with practical tools to analyze which harms are novel, which are familiar, and which are overstated. And they should reward faculty who bring that analysis into legislative conversations, even if it means fewer citations in traditional journals and more engagement with policymakers.

For legislators, the lesson is equally clear: resist the temptation to legislate against “AI” in the abstract. Instead, focus on use cases, industries, and contexts. Ask whether existing laws on consumer protection, labor, and competition already cover the concern. And when crafting new rules, ensure they are narrow enough to avoid sweeping in both the start-up and the superpower indiscriminately.

If academics can resist the pull of speculative debates, and if legislators can resist the urge to regulate AI as a monolith, we might finally bring policy into alignment with reality. The public deserves a debate focused less on worst-case scenarios and more on the practical realities of how today’s tools are already shaping daily life. That is where the real challenges—and the real opportunities—lie.

Kevin Frazier is an AI Innovation and Law Fellow at Texas Law and Author of the Appleseed AI substack.

Read More

Meta Undermining Trust but Verify through Paid Links
Facebook launches voting resource tool
Facebook launches voting resource tool

Meta Undermining Trust but Verify through Paid Links

Facebook is testing limits on shared external links, which would become a paid feature through their Meta Verified program, which costs $14.99 per month.

This change solidifies that verification badges are now meaningless signifiers. Yet it wasn’t always so; the verified internet was built to support participation and trust. Beginning with Twitter’s verification program launched in 2009, a checkmark next to a username indicated that an account had been verified to represent a notable person or official account for a business. We could believe that an elected official or a brand name was who they said they were online. When Twitter Blue, and later X Premium, began to support paid blue checkmarks in November of 2022, the visual identification of verification became deceptive. Think Fake Eli Lilly accounts posting about free insulin and impersonation accounts for Elon Musk himself.

This week’s move by Meta echoes changes at Twitter/X, despite the significant evidence that it leaves information quality and user experience in a worse place than before. Despite what Facebook says, all this tells anyone is that you paid.

Keep ReadingShow less
artificial intelligence

Rather than blame AI for young Americans struggling to find work, we need to build: build new educational institutions, new retraining and upskilling programs, and, most importantly, new firms.

Surasak Suwanmake/Getty Images

Blame AI or Build With AI? Only One Approach Creates Jobs

We’re failing young Americans. Many of them are struggling to find work. Unemployment among 16- to 24-year-olds topped 10.5% in August. Even among those who do find a job, many of them are settling for lower-paying roles. More than 50% of college grads are underemployed. To make matters worse, the path forward to a more stable, lucrative career is seemingly up in the air. High school grads in their twenties find jobs at nearly the same rate as those with four-year degrees.

We have two options: blame or build. The first involves blaming AI, as if this new technology is entirely to blame for the current economic malaise facing Gen Z. This course of action involves slowing or even stopping AI adoption. For example, there’s so-called robot taxes. The thinking goes that by placing financial penalties on firms that lean into AI, there will be more roles left to Gen Z and workers in general. Then there’s the idea of banning or limiting the use of AI in hiring and firing decisions. Applicants who have struggled to find work suggest that increased use of AI may be partially at fault. Others have called for providing workers with a greater say in whether and to what extent their firm uses AI. This may help firms find ways to integrate AI in a way that augments workers rather than replace them.

Keep ReadingShow less
Parv Mehta Is Leading the Fight Against AI Misinformation

A visual representation of deep fake and disinformation concepts, featuring various related keywords in green on a dark background, symbolizing the spread of false information and the impact of artificial intelligence.

Getty Images

Parv Mehta Is Leading the Fight Against AI Misinformation

At a moment when the country is grappling with the civic consequences of rapidly advancing technology, Parv Mehta stands out as one of the most forward‑thinking young leaders of his generation. Recognized as one of the 500 Gen Zers named to the 2025 Carnegie Young Leaders for Civic Preparedness cohort, Mehta represents the kind of grounded, community‑rooted innovator the program was designed to elevate.

A high school student from Washington state, Parv has emerged as a leading youth voice on the dangers of artificial intelligence and deepfakes. He recognized early that his generation would inherit a world where misinformation spreads faster than truth—and where young people are often the most vulnerable targets. Motivated by years of computer science classes and a growing awareness of AI’s risks, he launched a project to educate students across Washington about deepfake technology, media literacy, and digital safety.

Keep ReadingShow less
child holding smartphone

As Australia bans social media for kids under 16, U.S. parents face a harder truth: online safety isn’t an individual choice; it’s a collective responsibility.

Getty Images/Keiko Iwabuchi

Parents Must Quit Infighting to Keep Kids Safe Online

Last week, Australia’s social media ban for children under age 16 officially took effect. It remains to be seen how this law will shape families' behavior; however, it’s at least a stand against the tech takeover of childhood. Here in the U.S., however, we're in a different boat — a consensus on what's best for kids feels much harder to come by among both lawmakers and parents.

In order to make true progress on this issue, we must resist the fallacy of parental individualism – that what you choose for your own child is up to you alone. That it’s a personal, or family, decision to allow smartphones, or certain apps, or social media. But it’s not a personal decision. The choice you make for your family and your kids affects them and their friends, their friends' siblings, their classmates, and so on. If there is no general consensus around parenting decisions when it comes to tech, all kids are affected.

Keep ReadingShow less