Skip to content
Search

Latest Stories

Follow Us:
Top Stories

Generative AI Can Save Lives: Two Diverging Paths In Medicine

Opinion

Doctor using AI technology
Akarapong Chairean/Getty Images

Generative AI is advancing at breakneck speed. Already, it’s outperforming doctors on national medical exams and in making difficult diagnoses. Microsoft recently reported that its latest AI system correctly diagnosed complex medical cases 85.5% of the time, compared to just 20% for physicians. OpenAI’s newly released GPT-5 model goes further still, delivering its most accurate and responsive performance yet on health-related queries.

As GenAI tools double in power annually, two distinct approaches are emerging for how they might help patients.


One path involves FDA-approved tools built by startups and established technology companies. The other empowers patients to safely use existing tools like ChatGPT, Gemini, and Claude.

Each path has advantages and tradeoffs. Both are likely to shape healthcare’s future.

To better understand what’s at stake, it’s first helpful to examine how generative AI differs from the FDA-approved technologies used in medicine today.

Narrow AI

Medicine has relied on “narrow AI” applications for more than two decades, using models trained to complete specific tasks with structured clinical data.

These tools are programmed to compare two data sets, identify subtle differences, and assign a precise probability factor to each. In radiology, for example, narrow AI models have been trained on thousands of mammograms to distinguish between those demonstrating early-stage breast cancer and those with benign conditions like fibrocystic disease. These tools can detect differences too subtle for the human eye, resulting in up to 20% greater diagnostic accuracy than doctors working alone.

Because narrow AI systems produce consistent, repeatable results, they fit neatly within the FDA’s current regulatory framework. Approval requires measurable data quality, algorithmic transparency, and reproducibility of outcomes.

Generative AI: A new kind of medical expertise

Generative AI models are built differently. Rather than being trained on structured datasets for specific tasks, they learn from the near-totality of internet-accessible content, including thousands of medical textbooks, academic journals, and real-world clinical data.

This breadth allows GenAI tools to answer virtually any medical question. But the large language model responses vary based on how users frame questions, prompt the model, and follow up for clarification. That variability makes it impossible for the FDA to evaluate the accuracy and quality of the tools.

Two distinct pathways are emerging to bring generative AI into clinical practice. Maximizing their impact will require the government to change how it evaluates and supports technological innovation.

1. The traditional path: FDA-approved, venture-backed

As medical costs rise and patient outcomes stagnate, private technology companies are racing to develop FDA-approved generative AI tools that can help with diagnosis, treatment, and disease management.

This approach mirrors the narrow AI model: high-priced tools that are highly regulated and largely dependent on insurance coverage for American families to afford them.

With venture funding, companies can fine-tune open-source foundation models (like DeepSeek or Meta’s LLaMA) using a process called “distillation.” This involves extracting domain-specific knowledge and retraining the model with real-world clinical experiences, such as tens of thousands of X-rays (including radiologists’ readings) or anonymized transcripts of patient-provider conversations.

Consider how this approach might impact diabetes management. Today, fewer than half of patients achieve adequate disease control. The consequences include hundreds of thousands of preventable heart attacks, kidney failures, and limb amputations each year. A generative AI tool trained specifically for diabetes could replicate the approach of a skilled chronic disease nurse: asking the right questions, interpreting patient data, and offering personalized guidance to help users better manage their blood sugar levels.

This path already appears to have federal backing. The Trump administration recently launched its Medicare-funded Health Tech Ecosystem initiative, partnering with more than 60 tech and healthcare firms to pilot AI-enabled tools for chronic disease management, including diabetes and obesity.

Although distillation is faster and cheaper than building an AI model from scratch, the timeline to FDA approval could still span several years and cost tens of millions of dollars. And any adverse outcome could expose companies to legal liability.

2. The alternate path: Empowering patients with GenAI expertise

This second model flips the innovation equation. Instead of relying on expensive, FDA-approved tools developed by private tech companies, it empowers patients to use low-cost, publicly available generative AI to manage their own health better. This can be accomplished through digital walkthroughs, printed guides, YouTube videos, or brief in-person sessions.

For example, a patient might input their blood pressure, glucose readings, or new symptoms and receive reliable, evidence-based advice from ChatGPT or Claude: whether a medication change is needed, when to alert their doctor, or if emergency care is warranted. Similarly, patients working with their physicians could use these LLMs to detect early signs of post-operative infection, worsening heart failure, or neurological decline.

With 40% of doctors already engaged in “gig work,” an ample supply of clinicians from every specialty would be available to contribute their expertise to develop these training tools.

This model would bypass the need for costly product development or FDA approval. And because it offers education, not direct medical care. It would create minimal legal liability.

Government support for both models

These approaches are not mutually exclusive. Both have the potential to improve care, reduce costs, and extend access. And both will benefit from targeted government support.

The traditional path will require companies to evaluate the reliability of their tools by testing the accuracy of their recommendations against clinicians. When these tools are equivalent, the FDA would give its approval.

The alternate path of educating patients to use existing large language models will benefit from educational grants and added expertise from agencies like the CDC and NIH, partnering with medical societies to develop, test, and distribute training materials. These public-private efforts would equip patients with the knowledge to use GenAI safely and effectively without waiting years for new products or approvals.

Together, these models offer a safer and more affordable future for American healthcare.

Robert Pearl, the author of “ChatGPT, MD,” teaches at both the Stanford University School of Medicine and the Stanford Graduate School of Business. He is a former CEO of The Permanente Medical Group.


Read More

Meta Undermining Trust but Verify through Paid Links
Facebook launches voting resource tool
Facebook launches voting resource tool

Meta Undermining Trust but Verify through Paid Links

Facebook is testing limits on shared external links, which would become a paid feature through their Meta Verified program, which costs $14.99 per month.

This change solidifies that verification badges are now meaningless signifiers. Yet it wasn’t always so; the verified internet was built to support participation and trust. Beginning with Twitter’s verification program launched in 2009, a checkmark next to a username indicated that an account had been verified to represent a notable person or official account for a business. We could believe that an elected official or a brand name was who they said they were online. When Twitter Blue, and later X Premium, began to support paid blue checkmarks in November of 2022, the visual identification of verification became deceptive. Think Fake Eli Lilly accounts posting about free insulin and impersonation accounts for Elon Musk himself.

This week’s move by Meta echoes changes at Twitter/X, despite the significant evidence that it leaves information quality and user experience in a worse place than before. Despite what Facebook says, all this tells anyone is that you paid.

Keep ReadingShow less
artificial intelligence

Rather than blame AI for young Americans struggling to find work, we need to build: build new educational institutions, new retraining and upskilling programs, and, most importantly, new firms.

Surasak Suwanmake/Getty Images

Blame AI or Build With AI? Only One Approach Creates Jobs

We’re failing young Americans. Many of them are struggling to find work. Unemployment among 16- to 24-year-olds topped 10.5% in August. Even among those who do find a job, many of them are settling for lower-paying roles. More than 50% of college grads are underemployed. To make matters worse, the path forward to a more stable, lucrative career is seemingly up in the air. High school grads in their twenties find jobs at nearly the same rate as those with four-year degrees.

We have two options: blame or build. The first involves blaming AI, as if this new technology is entirely to blame for the current economic malaise facing Gen Z. This course of action involves slowing or even stopping AI adoption. For example, there’s so-called robot taxes. The thinking goes that by placing financial penalties on firms that lean into AI, there will be more roles left to Gen Z and workers in general. Then there’s the idea of banning or limiting the use of AI in hiring and firing decisions. Applicants who have struggled to find work suggest that increased use of AI may be partially at fault. Others have called for providing workers with a greater say in whether and to what extent their firm uses AI. This may help firms find ways to integrate AI in a way that augments workers rather than replace them.

Keep ReadingShow less
Parv Mehta Is Leading the Fight Against AI Misinformation

A visual representation of deep fake and disinformation concepts, featuring various related keywords in green on a dark background, symbolizing the spread of false information and the impact of artificial intelligence.

Getty Images

Parv Mehta Is Leading the Fight Against AI Misinformation

At a moment when the country is grappling with the civic consequences of rapidly advancing technology, Parv Mehta stands out as one of the most forward‑thinking young leaders of his generation. Recognized as one of the 500 Gen Zers named to the 2025 Carnegie Young Leaders for Civic Preparedness cohort, Mehta represents the kind of grounded, community‑rooted innovator the program was designed to elevate.

A high school student from Washington state, Parv has emerged as a leading youth voice on the dangers of artificial intelligence and deepfakes. He recognized early that his generation would inherit a world where misinformation spreads faster than truth—and where young people are often the most vulnerable targets. Motivated by years of computer science classes and a growing awareness of AI’s risks, he launched a project to educate students across Washington about deepfake technology, media literacy, and digital safety.

Keep ReadingShow less
child holding smartphone

As Australia bans social media for kids under 16, U.S. parents face a harder truth: online safety isn’t an individual choice; it’s a collective responsibility.

Getty Images/Keiko Iwabuchi

Parents Must Quit Infighting to Keep Kids Safe Online

Last week, Australia’s social media ban for children under age 16 officially took effect. It remains to be seen how this law will shape families' behavior; however, it’s at least a stand against the tech takeover of childhood. Here in the U.S., however, we're in a different boat — a consensus on what's best for kids feels much harder to come by among both lawmakers and parents.

In order to make true progress on this issue, we must resist the fallacy of parental individualism – that what you choose for your own child is up to you alone. That it’s a personal, or family, decision to allow smartphones, or certain apps, or social media. But it’s not a personal decision. The choice you make for your family and your kids affects them and their friends, their friends' siblings, their classmates, and so on. If there is no general consensus around parenting decisions when it comes to tech, all kids are affected.

Keep ReadingShow less