Skip to content
Search

Latest Stories

Follow Us:
Top Stories

Medical malpractice in the age of AI: Who will bear the blame?

Doctor holding a tablet projecting holographic data
pcess609/Getty Images

Pearl, the author of “ ChatGPT, MD,” teaches at both the Stanford University School of Medicine and the Stanford Graduate School of Business. He is a former CEO of The Permanente Medical Group.

More than two-thirds of U.S. physicians have changed their minds about generative artificial intelligence and now view the technology as beneficial to health care. But as AI grows more powerful and prevalent in medicine, apprehensions remain high among medical professionals.

For the last 18 months, I’ve examined the potential uses and misuses of generative AI in medicine — research that culminated my new book, ChatGPT, MD.” Over that time, I’ve seen the fears of clinicians evolve — from worries over AI’s reliability and, consequently, patient safety to a new set of fears: Who will be held liable when something goes wrong?


Technology experts have grown increasingly optimistic that next generations of AI technology will prove reliable and safe for patients, especially under expert human oversight. As evidence, recall that Google’s first medical AI model, Med-PaLM, achieved a mere “ passing score ” (>60 percent) on the U.S. medical licensing exam in late 2022. Five months later, its successor, Med-PaLM 2, scored at an “ expert ” doctor level (85 percent).

Since then, numerous studies have shown that generative AI increasingly outperforms medical professionals in various tasks. These include diagnosis, treatment decisions, data analysis and even empathy.

Despite these advancements, errors in medicine can and will occur, regardless of whether the expertise comes from human clinicians or advanced AI technologies.

Legal experts anticipate that as AI tools become more integrated into health care, determining liability will come down to whether errors result from AI decisions, human oversight or a combination of both.

For instance, if doctors use a generative AI tool in their offices for diagnosing or treating a patient and something goes wrong, the physician would likely be held liable, especially if it’s deemed that clinical judgment should have overridden the AI’s recommendations.

But the scenarios get more complex when generative AI is used without direct physician oversight. As an example, who is liable when patients rely on generative AI’s medical advice without consulting a doctor? Or what if a clinician encourages a patient to use an at-home AI tool for help with interpreting wearable device data, and the AI’s advice leads to a serious health issue?

In a working paper, legal scholars from the University of Michigan, Penn State and Harvard explored these challenges, noting: “Demonstrating the cause of an injury is already often hard in the medical context, where outcomes are frequently probabilistic rather than deterministic. Adding in AI models that are often non intuitive and sometimes inscrutable will likely make causation even more challenging to demonstrate.”

To get a better handle on the risks posed to clinicians when using AI, I spoke with Michelle Mello, professor of law and health policy at Stanford University and lead author of “ Understanding Liability Risk from Using Health Care Artificial Intelligence Tools.”

Her analysis, based on hundreds of tort cases, suggests that current legal precedents around software liability could be adapted to include AI. However, she points out that direct case law on any type of AI model remains “very sparse.” And when it comes to liability implications of using generative AI, specifically, there’s no public record of such cases being litigated.

So, for medical professionals worried about the risks of implementing AI, Mello offers reassurances mixed with warnings.

“At the end of the day, it has almost always been the case that the physician is on the hook when things go wrong in patient care,” she noted, but added: “As long as physicians are using this to inform a decision with other information and not acting like a robot, deciding purely based on the output, I suspect they’ll have a fairly strong defense against most of the claims that might relate to their use of GPTs.”

To minimize the risk, Mello said AI should be implemented as a supportive tool to enhance (not replace) clinical decisions. She also urges health care professionals to negotiate terms of service with major AI developers like Nvidia, OpenAI and Google, whose current disclaimers deny any liability for medical harm.

While concerns about the use of generative AI in health care are understandable, it’s critical to weigh these fears against the existing flaws in medical practice.

Each year, misdiagnoses lead to 371,000 American deaths while another 424,000 patients suffer permanent disabilities. Meanwhile, more than 250,000 deaths occur due to avoidable medical errors in the United States. Half a million people die annually from poorly managed chronic diseases, leading to preventable heart attacks, strokes, cancers, kidney failures and amputations.

Our nation’s health care professionals don’t have the time available in their daily practice to address the totality of patient needs. The demand for medical care is higher than ever at a time when health insurers — with their restrictive policies and bureaucratic requirements — make it harder than ever to provide excellent care.

It is imperative for policymakers, legal experts and health care professionals to collaborate on a framework that promotes the safe and effective use of AI. As part of their work, they’ll need to address concerns over liability. But they must recognize that the risks of not using generative AI to improve care will far outweigh the dangers posed by the technology itself. Only then can our nation reduce the enormous human toll resulting from our current medical failures.


Read More

New Cybersecurity Rules for Healthcare? Understanding HHS’s HIPPA Proposal
Getty Images, Kmatta

New Cybersecurity Rules for Healthcare? Understanding HHS’s HIPPA Proposal

Background

The Health Insurance Portability and Accountability Act (HIPAA) was enacted in 1996 to protect sensitive health information from being disclosed without patients’ consent. Under this act, a patient’s privacy is safeguarded through the enforcement of strict standards on managing, transmitting, and storing health information.

Keep ReadingShow less
Two people looking at screens.

A case for optimism, risk-taking, and policy experimentation in the age of AI—and why pessimism threatens technological progress.

Getty Images, Andriy Onufriyenko

In Defense of AI Optimism

Society needs people to take risks. Entrepreneurs who bet on themselves create new jobs. Institutions that gamble with new processes find out best to integrate advances into modern life. Regulators who accept potential backlash by launching policy experiments give us a chance to devise laws that are based on evidence, not fear.

The need for risk taking is all the more important when society is presented with new technologies. When new tech arrives on the scene, defense of the status quo is the easier path--individually, institutionally, and societally. We are all predisposed to think that the calamities, ailments, and flaws we experience today--as bad as they may be--are preferable to the unknowns tied to tomorrow.

Keep ReadingShow less
Trump Signs Defense Bill Prohibiting China-Based Engineers in Pentagon IT Work

President Donald Trump with Secretary of State Marco Rubio, left, and Secretary of Defense Pete Hegseth

Tasos Katopodis/Getty Images

Trump Signs Defense Bill Prohibiting China-Based Engineers in Pentagon IT Work

President Donald Trump signed into law this month a measure that prohibits anyone based in China and other adversarial countries from accessing the Pentagon’s cloud computing systems.

The ban, which is tucked inside the $900 billion defense policy law, was enacted in response to a ProPublica investigation this year that exposed how Microsoft used China-based engineers to service the Defense Department’s computer systems for nearly a decade — a practice that left some of the country’s most sensitive data vulnerable to hacking from its leading cyber adversary.

Keep ReadingShow less
Someone using an AI chatbot on their phone.

AI-powered wellness tools promise care at work, but raise serious questions about consent, surveillance, and employee autonomy.

Getty Images, d3sign

Why Workplace Wellbeing AI Needs a New Ethics of Consent

Across the U.S. and globally, employers—including corporations, healthcare systems, universities, and nonprofits—are increasing investment in worker well-being. The global corporate wellness market reached $53.5 billion in sales in 2024, with North America leading adoption. Corporate wellness programs now use AI to monitor stress, track burnout risk, or recommend personalized interventions.

Vendors offering AI-enabled well-being platforms, chatbots, and stress-tracking tools are rapidly expanding. Chatbots such as Woebot and Wysa are increasingly integrated into workplace wellness programs.

Keep ReadingShow less